Monocyclic β-Lactams Are Selective, Mechanism-Based Inhibitors of Rhomboid Intramembrane Proteases

نویسندگان

  • Olivier A. Pierrat
  • Kvido Strisovsky
  • Yonka Christova
  • Jonathan Large
  • Keith Ansell
  • Nathalie Bouloc
  • Ela Smiljanic
  • Matthew Freeman
چکیده

Rhomboids are relatively recently discovered intramembrane serine proteases that are conserved throughout evolution. They have a wide range of biological functions, and there is also much speculation about their potential medical relevance. Although rhomboids are weakly inhibited by some broad-spectrum serine protease inhibitors, no potent and specific inhibitors have been identified for these enzymes, which are mechanistically distinct from and evolutionarily unrelated to the classical soluble serine proteases. Here we report a new biochemical assay for rhomboid function based on the use of quenched fluorescent substrate peptides. We have developed this assay into a high-throughput format and have undertaken an inhibitor and activator screen of approximately 58,000 small molecules. This has led to the identification of a new class of rhomboid inhibitors, a series of monocyclic β-lactams, which are more potent than any previous inhibitor. They show selectivity, both for rhomboids over the soluble serine protease chymotrypsin and also, importantly, between different rhomboids; they can inhibit mammalian as well as bacterial rhomboids; and they are effective both in vitro and in vivo. These compounds represent important templates for further inhibitor development, which could have an impact both on biological understanding of rhomboid function and potential future drug development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases

Rhomboid-family intramembrane proteases regulate important biological processes and have been associated with malaria, cancer, and Parkinson's disease. However, due to the lack of potent, selective, and pharmacologically compliant inhibitors, the wide therapeutic potential of rhomboids is currently untapped. Here, we bridge this gap by discovering that peptidyl α-ketoamides substituted at the k...

متن کامل

A New Class of Rhomboid Protease Inhibitors Discovered by Activity-Based Fluorescence Polarization

Rhomboids are intramembrane serine proteases that play diverse biological roles, including some that are of potential therapeutical relevance. Up to date, rhomboid inhibitor assays are based on protein substrate cleavage. Although rhomboids have an overlapping substrate specificity, substrates cannot be used universally. To overcome the need for substrates, we developed a screening assay using ...

متن کامل

Structure of Rhomboid Protease in Complex with β-Lactam Inhibitors Defines the S2′ Cavity

Rhomboids are evolutionarily conserved serine proteases that cleave transmembrane proteins within the membrane. The increasing number of known rhomboid functions in prokaryotes and eukaryotes makes them attractive drug targets. Here, we describe structures of the Escherichia coli rhomboid GlpG in complex with β-lactam inhibitors. The inhibitors form a single bond to the catalytic serine and the...

متن کامل

A kinetic analysis of the inhibition of FOX-4 β-lactamase, a plasmid-mediated AmpC cephalosporinase, by monocyclic β-lactams and carbapenems.

OBJECTIVES Class C β-lactamases are prevalent among Enterobacteriaceae; however, these enzymes are resistant to inactivation by commercially available β-lactamase inhibitors. In order to find novel scaffolds to inhibit class C β-lactamases, the comparative efficacy of monocyclic β-lactam antibiotics (aztreonam and the siderophore monosulfactam BAL30072), the bridged monobactam β-lactamase inhib...

متن کامل

Long-term Proposal Report Structural Study of Regulated Intramembrane Proteolysis

Regulated Intramembrane Proteolysis (RIP) is a highly conserved signaling mechanism, where a signaling molecule is cleaved within the lipid bilayer by an intramembrane protease. Traditional wisdom argued that proteolysis requires water; however, in RIP, both the protease and the substrate are integral membrane proteins and the cleavage occurs within the hydrophobic lipid bilayer. It has been mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011